# APPENDIX C – DEVELOPMENT OF WATER QUALITY-BASED EFFLUENT LIMITS

The calculations for water quality-based effluent limits are done according to procedures in Chapter 5 of EPA's Technical Support Document for Water Quality-Based Toxics Control (TSD).

The spreadsheets following this document contain the calculations for water quality-based limits for the Red Dog Port Site Outfalls 001 and 005.

## Step 1 – Determine the Wasteload Allocations (WLAs) for each parameter

WLAs define the allowable concentration of pollutant in the effluent. The water quality criteria are converted to WLAs for the receiving water based on the following mass balance equation:

WLA =  $(C_r - C_b)$  \* dilution where,

 $C_{\rm r}$ Criteria that cannot be exceeded at the edge of the mixing zone

Background concentration of pollutant  $C_{h}$ 

Designated mixing zone Dilution

## Step 2 – Determine Long Term Averages

The acute and chronic WLAs are converted to Long Term Averages (LTA<sub>acute</sub> and LTA<sub>chronic</sub>) using the following equations:

 $LTA_{acute} = WLA_{acute} * e[0.5\sigma^2 - z\sigma]$  where,

 $\sigma^2$  =  $ln(CV^2 + 1)$  CV = Coefficient of variation of the effluent data z = 2.326 for the 99<sup>th</sup> percentile probability basis

 $LTA_{chronic} = WLA_{chronic} * e[0.5\sigma^2-z\sigma]$  where,

 $\sigma^2$  =  $ln(CV^2/4 + 1)$  CV = Coefficient of variation of the effluent data z = 2.326 for the 99<sup>th</sup> percentile probability basis

#### Step 3 – Determine Average Monthly and Maximum Daily Limits

To protect a waterbody from both acute and chronic effects, the more limiting of the calculated LTA<sub>acute</sub> and LTA<sub>chronic</sub> is used to derive the effluent limitations. The TSD recommends using the 95<sup>th</sup> percentile for the Average Monthly Limit (AML) and the 99<sup>th</sup> percentile for the Maximum Daily Limit (MDL).

To derive the MDL and the AML, the following calculations are used:

MDL = LTA \* 
$$e[z\sigma-0.5\sigma^2]$$
 where,

$$\sigma^2 = \ln(CV^2 + 1)$$

 $\sigma^2$  =  $ln(CV^2 + 1)$  CV = Coefficient of variation of the effluent data z = 2.326 for the 99<sup>th</sup> percentile probability basis

AML = LTA \* 
$$e[z\sigma-0.5\sigma^2]$$
 where,

$$\sigma^2$$
 =  $\ln(CV^2/n + 1)$   
 $CV$  = Coefficient of  $\sigma$  = Number of sar  $\sigma$  = 1.645 for the  $\sigma$ 

Coefficient of variation of the effluent data CV

Number of sampling events required in permit per month

1.645 for the 95<sup>th</sup> percentile probability basis

# Step 4 – Compare Aquatic Life and Technology-based Effluent Limits

Compare water quality-based (aquatic life) and technology-based effluent limits and put the more stringent limits in the permit.

|                        | Dilution (D<br>chronic mi |                            | the inverse                         | of the percer                   |                              |                                       | e edge of the ac                        |                                      |                                 |                       | Waste L            |                | ation (WLA |       | Term A                        | verage                 |                 | St                     |                        |                        | or permit                       | imit |  |
|------------------------|---------------------------|----------------------------|-------------------------------------|---------------------------------|------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|-----------------------|--------------------|----------------|------------|-------|-------------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|---------------------------------|------|--|
|                        |                           |                            |                                     | Permit Limit Calculation Summar |                              |                                       |                                         |                                      | ry                              |                       | (LTA) Calculations |                |            |       |                               |                        |                 | calculation            |                        |                        |                                 |      |  |
|                        | Acute<br>Dil'n<br>Factor  | Chronic<br>Dil'n<br>Factor | Metal<br>Criteria<br>Translat<br>or | Translat or                     | Ambient<br>Concentr<br>ation | Water<br>Quality<br>Standard<br>Acute | Water<br>Quality<br>Standard<br>Chronic | Average<br>Monthly<br>Limit<br>(AML) | Maximum<br>Daily Limit<br>(MDL) | Limits used in permit | WLA<br>Acute       | WLA<br>Chronic |            |       | LTA<br>Coeff.<br>Var.<br>(CV) | LTA<br>Prob'y<br>Basis | Limiting<br>LTA | Coeff.<br>Var.<br>(CV) | AML<br>Prob'y<br>Basis | MDL<br>Prob'y<br>Basis | # of<br>Samples<br>per<br>Month |      |  |
| PARAMETER              |                           |                            | Acute                               | Chronic                         | ug/L                         | ug/L                                  | ug/L                                    | ug/L                                 | ug/L                            |                       | ug/L               | ug/L           | ug/L       | ug/L  | decimal                       | decimal                | ug/L            | decima                 | decimal                | decimal                | n                               |      |  |
| otal Residual Chlorine | 92                        | 140                        |                                     |                                 |                              | 13.00                                 | 7.50                                    | 502.1                                | 1196.0                          | TB                    | 1196               | 1050.00        | 384.0      | 553.8 | 0.60                          | 0.99                   | 384.0           | 0.60                   | 0.95                   | 0.99                   | 12.00                           | 1.00 |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      | ТВ                              | = Technology B        | ased               |                |            |       |                               |                        |                 |                        |                        |                        | 1                               |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |
|                        |                           |                            |                                     |                                 |                              |                                       |                                         |                                      |                                 |                       |                    |                |            |       |                               |                        |                 |                        |                        |                        |                                 |      |  |

# 4/25/2005 2:30 PM APPENDIX C - OUTFALL 005 NPDES Permit No. AK-004064-9 AppxC.xls WATER QUALITY BASED PERMIT LIMIT CALCULATIONS

|         | Dilution (Dil'n) factor is the inverse of the percent effluent concentration at the edge of the acute or<br>chronic mixing zone. |                 |                         |                           |                           |                           |                             |                        | Waste               | Load Al          |                      |                        |                      | g Term                 |                           | Statistical variables for permit limit |                         |                         |                            | limit           | This sprea      |       |                                   |            |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|------------------------|---------------------|------------------|----------------------|------------------------|----------------------|------------------------|---------------------------|----------------------------------------|-------------------------|-------------------------|----------------------------|-----------------|-----------------|-------|-----------------------------------|------------|--|--|
|         |                                                                                                                                  |                 |                         |                           | l                         | Permit Lin                | nit Calculat                | ion Sumn               | nary                |                  |                      | Avera                  | ge (LTA              | ) Calcula              | ations                    |                                        |                         |                         |                            | calculation     | on              |       | calculates water                  |            |  |  |
|         | Acute                                                                                                                            | Chronic         | Metal<br>Criteria       | Metal<br>Criteria         | Ambient                   | Water<br>Quality          | Water<br>Quality            | Average<br>Monthly     | Maximum Daily Limit |                  |                      |                        |                      |                        | LTA<br>Coeff.             | LTA                                    |                         | Coeff.                  | AML                        |                 | # of<br>Samples |       | quality bas<br>limits base        | d on the   |  |  |
| RAMETER | Dil'n<br>Factor                                                                                                                  | Dil'n<br>Factor | Translat<br>or<br>Acute | Translat<br>or<br>Chronic | Concentr<br>ation<br>ug/L | Standard<br>Acute<br>ug/L | Standard<br>Chronic<br>ug/L | Limit<br>(AML)<br>ug/L |                     |                  | WLA<br>Acute<br>ug/L | WLA<br>Chronic<br>ug/L | LTA<br>Acute<br>ua/L | LTA<br>Chronic<br>ug/L | Var.<br>c (CV)<br>decimal | Prob'y<br>Basis<br>decimal             | Limiting<br>LTA<br>ug/L | Var.<br>(CV)<br>decimal | Prob'y<br>Basis<br>decimal | Prob'y<br>Basis | per<br>Month    |       | two value steady state model. The |            |  |  |
| Cadmium | 92                                                                                                                               | 140             | 0.994                   | 0.994                     | 1.09                      | 40.00                     | 8.80                        | 811.8                  | 1957.1              | Technology Based | 3581                 | 1080.49                | 804.4                | 437.0                  | 0.90                      | 0.99                                   | 437.0                   | 0.90                    | 0.95                       | 0.99            | 4.00            | 0.994 | procedure<br>calculation          |            |  |  |
| Mercury | 92                                                                                                                               | 140             | 0.850                   | 0.850                     | 0.15                      | 1.80                      | 0.94                        | 56.5                   | 178.8               | Technology Based | 152                  | 110.75                 | 15.9                 | 19.2                   | 2.40                      | 0.99                                   | 15.9                    | 2.40                    | 0.95                       | 0.99            | 4.00            | 0.850 | done per t                        |            |  |  |
| Lead    | 92                                                                                                                               | 140             | 0.951                   | 0.951                     | 3.90                      | 210.00                    | 8.10                        | 360.9                  | 1098.4              | Technology Based |                      |                        | 2300.5               | 126.7                  | 1.89                      | 0.99                                   | 126.7                   | 1.89                    | 0.95                       | 0.99            | 4.00            | 0.951 | Technical                         |            |  |  |
| Zinc    | 92                                                                                                                               | 140             | 0.946                   | 0.946                     | 56.75                     | 90.00                     | 81.00                       | 1471.9                 | 3293.6              | Technology Based | 3116                 | 3451.75                | 814.4                | 1572.6                 | 0.76                      | 0.99                                   | 814.4                   | 0.76                    | 0.95                       | 0.99            | 4.00            | 0.946 | Document                          |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       | Quality-ba                        |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       | Control, U.<br>March, 199         |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       | (EPA/505/                         |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       | [(L1 7/303/                       | 2-30-001), |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |
|         |                                                                                                                                  |                 |                         |                           |                           |                           |                             |                        |                     |                  |                      |                        |                      |                        |                           |                                        |                         |                         |                            |                 |                 |       |                                   |            |  |  |